Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nat Commun ; 15(1): 3310, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632249

RESUMO

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is a devastating disease that is present in all major soybean-producing regions. The limited availability of resistant germplasm has resulted in a scarcity of commercial soybean cultivars that are resistant to the disease. To date, only the Chinese soybean landrace SX6907 has demonstrated an immune response to ASR. In this study, we present the isolation and characterization of Rpp6907-7 and Rpp6907-4, a gene pair that confer broad-spectrum resistance to ASR. Rpp6907-7 and Rpp6907-4 encode atypic nucleotide-binding leucine-rich repeat (NLR) proteins that are found to be required for NLR-mediated immunity. Genetic analysis shows that only Rpp6907-7 confers resistance, while Rpp6907-4 regulates Rpp6907-7 signaling activity by acting as a repressor in the absence of recognized effectors. Our work highlights the potential value of using Rpp6907 in developing resistant soybean cultivars.


Assuntos
Phakopsora pachyrhizi , Soja , Genes de Plantas , Doenças das Plantas/genética
2.
Plant Biotechnol J ; 22(2): 296-315, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37883664

RESUMO

Soybean rust (SBR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is a devastating foliar disease threatening soybean production. To date, no commercial cultivars conferring durable resistance to SBR are available. The development of long-lasting SBR resistance has been hindered by the lack of understanding of this complex pathosystem, encompassing challenges posed by intricate genetic structures in both the host and pathogen, leading to a gap in the knowledge of gene-for-gene interactions between soybean and P. pachyrhizi. In this review, we focus on recent advancements and emerging technologies that can be used to improve our understanding of the P. pachyrhizi-soybean molecular interactions. We further explore approaches used to combat SBR, including conventional breeding, transgenic approaches and RNA interference, and how advances in our understanding of plant immune networks, the availability of new molecular tools, and the recent sequencing of the P. pachyrhizi genome could be used to aid in the development of better genetic resistance against SBR. Lastly, we discuss the research gaps of this pathosystem and how new technologies can be used to shed light on these questions and to develop durable next-generation SBR-resistant soybean plants.


Assuntos
Basidiomycota , Phakopsora pachyrhizi , Phakopsora pachyrhizi/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686258

RESUMO

Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most destructive foliar diseases that affect soybeans. Developing resistant cultivars is the most cost-effective, environmentally friendly, and easy strategy for controlling the disease. However, the current understanding of the mechanisms underlying soybean resistance to P. pachyrhizi remains limited, which poses a significant challenge in devising effective control strategies. In this study, comparative transcriptomic profiling using one resistant genotype and one susceptible genotype was performed under infected and control conditions to understand the regulatory network operating between soybean and P. pachyrhizi. RNA-Seq analysis identified a total of 6540 differentially expressed genes (DEGs), which were shared by all four genotypes. The DEGs are involved in defense responses, stress responses, stimulus responses, flavonoid metabolism, and biosynthesis after infection with P. pachyrhizi. A total of 25,377 genes were divided into 33 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with pathogen defense. The DEGs were mainly enriched in RNA processing, plant-type hypersensitive response, negative regulation of cell growth, and a programmed cell death process. In conclusion, these results will provide an important resource for mining resistant genes to P. pachyrhizi infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.


Assuntos
Phakopsora pachyrhizi , Transcriptoma , RNA-Seq , Phakopsora pachyrhizi/genética , Resistência à Doença/genética , Genótipo
4.
Pest Manag Sci ; 79(10): 3749-3756, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37198351

RESUMO

BACKGROUND: Transgenic event DAS44406-6 (E3) makes soybeans that are herbicide [glyphosate (Gly), 2,4-dichlorophenoxyacetic acid (2,4-D) and glufosinate] and caterpillar resistant. The E3 soybean was commercially released for the 2021/2022 harvest in Brazil. We conducted this study to test whether Gly and 2,4-D applied alone and in a commercial mixture affect Asian soybean rust (ASR). Assays were conducted in detached leaves and in vivo, in a controlled environment using the herbicides Gly, 2,4-D and Gly + 2,4-D, and pathogen inoculation. Disease severity and spore production were evaluated. RESULTS: Only the herbicides Gly and Gly + 2,4-D inhibited ASR in detached leaves and in vivo. When applied preventively and curatively in vivo, these herbicides reduced the disease severity and spore production of the fungus. In vivo, inhibition of disease severity reached 87% for Gly + 2,4-D and 42% for Gly. A synergistic effect was observed with the commercial Gly + 2,4-D mixture. Application of 2,4-D alone in the in vivo assays did not reduce or increase disease severity. Gly and Gly + 2,4-D act residually in inhibiting the disease. Growing E3 soybeans may combine weed and caterpillar management benefits with ASR inhibition. CONCLUSION: Application of Gly and Gly + 2,4-D herbicides in resistant E3 soybean shows inhibitory activity for ASR. © 2023 Society of Chemical Industry.


Assuntos
Herbicidas , Phakopsora pachyrhizi , Herbicidas/farmacologia , Resistência a Herbicidas , Ácido 2,4-Diclorofenoxiacético/farmacologia
5.
Nat Commun ; 14(1): 1835, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005409

RESUMO

With >7000 species the order of rust fungi has a disproportionately large impact on agriculture, horticulture, forestry and foreign ecosystems. The infectious spores are typically dikaryotic, a feature unique to fungi in which two haploid nuclei reside in the same cell. A key example is Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease, one of the world's most economically damaging agricultural diseases. Despite P. pachyrhizi's impact, the exceptional size and complexity of its genome prevented generation of an accurate genome assembly. Here, we sequence three independent P. pachyrhizi genomes and uncover a genome up to 1.25 Gb comprising two haplotypes with a transposable element (TE) content of ~93%. We study the incursion and dominant impact of these TEs on the genome and show how they have a key impact on various processes such as host range adaptation, stress responses and genetic plasticity.


Assuntos
Basidiomycota , Phakopsora pachyrhizi , Elementos de DNA Transponíveis/genética , /microbiologia , Ecossistema , Basidiomycota/genética , Proliferação de Células
6.
Plant J ; 113(5): 915-933, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36424366

RESUMO

The soybean Rpp1 locus confers resistance to Phakopsora pachyrhizi, causal agent of rust, and resistance is usually dominant over susceptibility. However, dominance of Rpp1-mediated resistance is lost when a resistant genotype (Rpp1 or Rpp1b) is crossed with susceptible line TMG06_0011, and the mechanism of this dominant susceptibility (DS) is unknown. Sequencing the Rpp1 region reveals that the TMG06_0011 Rpp1 locus has a single nucleotide-binding site leucine-rich repeat (NBS-LRR) gene (DS-R), whereas resistant PI 594760B (Rpp1b) is similar to PI 200492 (Rpp1) and has three NBS-LRR resistance gene candidates. Evidence that DS-R is the cause of DS was reflected in virus-induced gene silencing of DS-R in Rpp1b/DS-R or Rpp1/DS-R heterozygous plants with resistance partially restored. In heterozygous Rpp1b/DS-R plants, expression of Rpp1b candidate genes was not significantly altered, indicating no effect of DS-R on transcription. Physical interaction of the DS-R protein with candidate Rpp1b resistance proteins was supported by yeast two-hybrid studies and in silico modeling. Thus, we conclude that suppression of resistance most likely does not occur at the transcript level, but instead probably at the protein level, possibly with Rpp1 function inhibited by binding to the DS-R protein. The DS-R gene was found in other soybean lines, with an estimated allele frequency of 6% in a diverse population, and also found in wild soybean (Glycine soja). The identification of a dominant susceptible NBS-LRR gene provides insight into the behavior of NBS-LRR proteins and serves as a reminder to breeders that the dominance of an R gene can be influenced by a susceptibility allele.


Assuntos
Phakopsora pachyrhizi , Phakopsora pachyrhizi/genética , Proteínas de Repetições Ricas em Leucina , Genes de Plantas/genética , Sítios de Ligação , Doenças das Plantas/genética
7.
Arq. Inst. Biol ; 90: e00102022, 2023. graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1447285

RESUMO

The obstacles in Phakopsora pachyrhizi management result especially from susceptible soybean genotypes and resistant fungal strains. The objective of the current study was to evaluate the applicability of the emission of extremely low and specific frequencies by Effatha technology in the soybean Asian rust control, nutrition, and its impact on yield. The in-vivo test followed the detached leaves method, with six treatments: frequencies 1 and 2 individually and in association; the conventional chemical treatment (fungicide azoxystrobin + benzovindiflupyr); and witnesses in presence and absence of the fungus. Frequency 1 relates to inhibition of the enzyme succinate dehydrogenase and 2 to ubiquinone oxidase. In the field, frequencies 1 and 2 associated (with the same fungicidal action of the in-vivo study); nutritional frequency; application of azoxystrobin + benzovindiflupyr + mancozeb, and control without application were evaluated. In vivo, the fungicide provided 85% control of the disease symptoms, against 65% of frequencies 1 and 2 in association, which showed a higher efficiency compared to the isolated frequencies. In the field, the rate of increase of symptoms were reduced by all treatments compared to the control. At the end of the soybean cycle, the conventional fungicide resulted in 33% severity against 56% of frequencies 1 and 2 associated, and 69.2% of the control. The emission of the frequency for increased nutrient efficiency stood out positively on yield in relation to all the other ones. The conventional application provided the highest weight of 1,000 grains, possibly a direct reflection of the better control of the disease.


Assuntos
Soja , Imagens de Satélites/métodos , Phakopsora pachyrhizi , Fungicidas Industriais/administração & dosagem
8.
Theor Appl Genet ; 135(9): 3073-3086, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35902398

RESUMO

KEY MESSAGE: Eight soybean genomic regions, including six never before reported, were found to be associated with resistance to soybean rust (Phakopsora pachyrhizi) in the southeastern USA. Soybean rust caused by Phakopsora pachyrhizi is one of the most important foliar diseases of soybean [Glycine max (L.) Merr.]. Although seven Rpp resistance gene loci have been reported, extensive pathotype variation in and among fungal populations increases the importance of identifying additional genes and loci associated with rust resistance. One hundred and ninety-one soybean plant introductions from Japan, Indonesia and Vietnam, and 65 plant introductions from other countries were screened for resistance to P. pachyrhizi under field conditions in the southeastern USA between 2008 and 2015. The results indicated that 84, 69, and 49% of the accessions from southern Japan, Vietnam or central Indonesia, respectively, had negative BLUP values, indicating less disease than the panel mean. A genome-wide association analysis using SoySNP50K Infinium BeadChip data identified eight genomic regions on seven chromosomes associated with SBR resistance, including previously unreported regions of Chromosomes 1, 4, 6, 9, 13, and 15, in addition to the locations of the Rpp3 and Rpp6 loci. The six unreported genomic regions might contain novel Rpp loci. The identification of additional sources of rust resistance and associated genomic regions will further efforts to develop soybean cultivars with broad and durable resistance to soybean rust in the southern USA.


Assuntos
Basidiomycota , Phakopsora pachyrhizi , Genes de Plantas , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Indonésia , Japão , Phakopsora pachyrhizi/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , /microbiologia , Vietnã
9.
Methods Mol Biol ; 2523: 79-91, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35759192

RESUMO

To obtain direct evidence for the influence of an effector on the virulence or pathogenicity of a pathogen, it is necessary to knock out, knock down, or silence the respective gene. Since genetic transformation is not yet possible for rust fungi, silencing the gene is the only option. Posttranscriptional gene silencing uses RNAi. RNAi in plant pathogens can be accomplished by introducing dsRNA either by direct application of in vitro synthesized dsRNA or through positive-strand or double-strand RNA plant viruses. For studying effectors in Phakopsora pachyrhizi, we have implemented a host-induced silencing procedure based on virus-induced gene silencing using the bean pod mottle virus system. Here, procedures and interpretations of results are described and limitations of the system are discussed.


Assuntos
Basidiomycota , Phakopsora pachyrhizi , Basidiomycota/genética , Inativação Gênica , Phakopsora pachyrhizi/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , /genética
10.
Mol Plant Microbe Interact ; 35(9): 779-790, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35617509

RESUMO

Asian soybean rust, caused by the fungus Phakopsora pachyrhizi, is one of the most important diseases affecting soybean production in tropical areas. During infection, P. pachyrhizi secretes proteins from haustoria that are transferred into plant cells to promote virulence. To date, only one candidate P. pachyrhizi effector protein has been characterized in detail to understand the mechanism by which it suppresses plant defenses to enhance infection. Here, we aimed to extend understanding of the pathogenic mechanisms of P. pachyrhizi based on the discovery of host proteins that interact with the effector candidate Phapa-7431740. We demonstrated that Phapa-7431740 suppresses pathogen-associated molecular pattern-triggered immunity (PTI) and that it interacts with a soybean glucan endo-1,3-ß-glucosidase (GmßGLU), a pathogenesis-related (PR) protein belonging to the PR-2 family. Structural and phylogenetic characterization of the PR-2 protein family predicted in the soybean genome and comparison to PR-2 family members in Arabidopsis thaliana and cotton, demonstrated that GmßGLU is a type IV ß-1,3-glucanase. Transcriptional profiling during an infection time course showed that the GmßGLU mRNA is highly induced during the initial hours after infection, coinciding with peak of expression of Phapa-7431740. The effector was able to interfere with the activity of GmßGLU in vitro, with a dose-dependent inhibition. Our results suggest that Phapa-7431740 may suppress PTI by interfering with glucan endo-1,3-ß-glucosidase activity. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.


Assuntos
Arabidopsis , Phakopsora pachyrhizi , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Moléculas com Motivos Associados a Patógenos/metabolismo , Phakopsora pachyrhizi/metabolismo , Filogenia , Doenças das Plantas/microbiologia , RNA Mensageiro/metabolismo , Virulência , beta-Glucosidase/metabolismo
11.
Phytopathology ; 112(7): 1413-1421, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35080435

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) fungicides are used to control Asian soybean rust (Phakopsora pachyrhizi), and the SdhC-I86F mutation is related to pathogen resistance. The objective of this study was to determine whether fitness penalties are associated with SDHI resistance (SdhC-I86F mutation) in P. pachyrhizi populations. Moreover, the study investigated whether the SdhC-I86F mutation remained stable after the fungus propagation both in the absence and presence of fungicide. The populations used in this study presented mutations for all genes analyzed (Cyp51, Cytb, and SdhC), except for a wild-type population (WTSdhC) found with no SdhC-I86F mutation. The frequencies of the SdhC-I86F mutant populations were stable after 36 generations in the absence of fungicide. However, in the case of the WTSdhC population, the SdhC-I86F mutation was further detected after one generation of the fungus in the presence of the SDHI fungicide, according to the results of a detached leaf assay. Three tests were performed to evaluate fitness components and sensitivity to fungicides (half maximal effective concentration). SdhC-I86F mutant populations were more sensitive to osmotic and oxidative stress than the WTSdhC population; however, the sensitivity to ultraviolet radiation was similar for both populations. All mutated populations were less sensitive than the WTSdhC when using SDHI (azoxystrobin + benzovindiflupyr), but more sensitive to mancozeb. The presence of fitness penalties, the mutation stability, and the sensitivity to mancozeb presented by the SdhC-I86F mutant populations can be relevant to the management of the disease in the field.


Assuntos
Fungicidas Industriais , Phakopsora pachyrhizi , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Mutação , Phakopsora pachyrhizi/genética , Doenças das Plantas/microbiologia , Raios Ultravioleta
12.
Sensors (Basel) ; 22(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062631

RESUMO

Mato Grosso, Brazil, is the largest soy producer in the country. Asian Soy Rust is a disease that has already caused a lot of damage to Brazilian agribusiness. The plant matures prematurely, hindering the filling of the pod, drastically reducing productivity. It is caused by the Phakopsora pachyrhizi fungus. For a plant disease to establish itself, the presence of a pathogen, a susceptible plant, and favorable environmental conditions are necessary. This research developed a fuzzy system gathering these three variables as inputs, having as an output the vulnerability of the region to the disease. The presence of the pathogen was measured using a diffusion-advection equation appropriate to the problem. Some coefficients were based on the literature, others were measured by a fuzzy system and others were obtained by real data. From the mapping of producing properties, the locations where there are susceptible plants were established. And the favorable environmental conditions were also obtained from a fuzzy system, whose inputs were temperature and leaf wetness. Data provided by IBGE, INMET, and Antirust Consortium were used to fuel the model, and all treatments, tests, and simulations were carried out within the Matlab® environment. Although Asian Soybean Rust was the chosen disease here, the model was general in nature, so could be reproduced for any disease of plants with the same profile.


Assuntos
Basidiomycota , Phakopsora pachyrhizi , Doenças das Plantas , Folhas de Planta
13.
Phytopathology ; 112(4): 862-871, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34622696

RESUMO

With the progressive loss of fungicide efficacy against Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), alternative methods to protect soybean crops are needed. Resistance induction is a low impact alternative and/or supplement to fungicide applications that fortifies innate plant defenses against pathogens. Here, we show that a microbial fermentation product (MFP) induces plant defenses in soybean, and transcriptional induction is enhanced with the introduction of ASR. MFP-treated plants exhibited 1,011 and 1,877 differentially expressed genes (DEGs) 12 and 60 h after treatment, respectively, compared with water controls. MFP plants exposed to the pathogen 48 h after application and sampled 12 h later (for a total of 60 h) had 2,401 DEGs compared with control. The plant defense genes PR1, PR2, IPER, PAL, and CHS were induced with MFP application, and induction was enhanced with ASR. Enriched pathways associated with pathogen defense included plant-pathogen interactions, MAPK signaling pathways, phenylpropanoid biosynthesis, glutathione metabolism, flavonoid metabolism, and isoflavonoid metabolism. In field conditions, elevated antioxidant peroxidase activities and phenolic accumulation were measured with MFP treatment; however, improved ASR control or enhanced crop yield were not observed. MFP elicitation differences between field and laboratory grown plants necessitates further testing to identify best practices for effective disease management with MFP-treated soybean.


Assuntos
Phakopsora pachyrhizi , Fermentação , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , /genética
14.
Sci Rep ; 11(1): 24453, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961779

RESUMO

Soybean is one of the most important legume crops worldwide. However, soybean yield is dramatically affected by fungal diseases, leading to economic losses of billions of dollars yearly. Here, we integrated publicly available genome-wide association studies and transcriptomic data to prioritize candidate genes associated with resistance to Cadophora gregata, Fusarium graminearum, Fusarium virguliforme, Macrophomina phaseolina, and Phakopsora pachyrhizi. We identified 188, 56, 11, 8, and 3 high-confidence candidates for resistance to F. virguliforme, F. graminearum, C. gregata, M. phaseolina and P. pachyrhizi, respectively. The prioritized candidate genes are highly conserved in the pangenome of cultivated soybeans and are heavily biased towards fungal species-specific defense responses. The vast majority of the prioritized candidate resistance genes are related to plant immunity processes, such as recognition, signaling, oxidative stress, systemic acquired resistance, and physical defense. Based on the number of resistance alleles, we selected the five most resistant accessions against each fungal species in the soybean USDA germplasm. Interestingly, the most resistant accessions do not reach the maximum theoretical resistance potential. Hence, they can be further improved to increase resistance in breeding programs or through genetic engineering. Finally, the coexpression network generated here is available in a user-friendly web application ( https://soyfungigcn.venanciogroup.uenf.br/ ) and an R/Shiny package ( https://github.com/almeidasilvaf/SoyFungiGCN ) that serve as a public resource to explore soybean-pathogenic fungi interactions at the transcriptional level.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fusarium/fisiologia , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Phakopsora pachyrhizi/fisiologia , Proteínas de Plantas/genética , /microbiologia
15.
Nat Commun ; 12(1): 6424, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741028

RESUMO

Medicines and agricultural biocides are often discovered using large phenotypic screens across hundreds of compounds, where visible effects of whole organisms are compared to gauge efficacy and possible modes of action. However, such analysis is often limited to human-defined and static features. Here, we introduce a novel framework that can characterize shape changes (morphodynamics) for cell-drug interactions directly from images, and use it to interpret perturbed development of Phakopsora pachyrhizi, the Asian soybean rust crop pathogen. We describe population development over a 2D space of shapes (morphospace) using two models with condition-dependent parameters: a top-down Fokker-Planck model of diffusive development over Waddington-type landscapes, and a bottom-up model of tip growth. We discover a variety of landscapes, describing phenotype transitions during growth, and identify possible perturbations in the tip growth machinery that cause this variation. This demonstrates a widely-applicable integration of unsupervised learning and biophysical modeling.


Assuntos
Aprendizado Profundo , /virologia , Perfilação da Expressão Gênica , Humanos , Phakopsora pachyrhizi/patogenicidade , Doenças das Plantas/virologia
16.
Pest Manag Sci ; 77(10): 4331-4339, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33950556

RESUMO

BACKGROUND: Fungicides of the succinate dehydrogenase inhibitors (SDHIs) group have been used in soybean to control Asian soybean rust (ASR) caused by Phakopsora pachyrhizi. Fungal populations with less sensitivity to SDHI fungicides have been reported since 2015. RESULTS: In this study, fungal sensitivity to benzovindiflupyr (BZV) and fluxapyroxad (FXD) was assessed using a total of 770 P. pachyrhizi populations sampled over four soybean growing seasons. Cross-resistance, intrinsic activity, and frequency of SDHC-I86F mutation were also analyzed. The average effective concentration to inhibit 50% (EC50 ) and SDHC-I86F frequency increased over the 2015/2016, 2016/2017, 2017/2018 and 2018/2019 soybean-seasons. Fourteen P. pachyrhizi populations had the EC50 value above 10 mg L-1 for both carboxamides. No difference was found in intrinsic active to BZV and FXD fungicides for sensitive P. pachyrhizi populations. For P. pachyrhizi classified as less sensitive BZV showed the highest fungitoxicity effect. High frequency of the C-I86F mutation was observed in samples collected in volunteer soybean plants. The maximum frequency of SDHC-I86F mutation in the population was 50% and resulting in ASR populations with low sensitivity to SDHIs. A low correlation between bioassay and SDHC-I86F mutation was observed possible due to the dikaryotic nature of rust fungi or other mutations in the other succinate dehydrogenase subunits. CONCLUSION: The present work provides an overview of a large sampling size of P. pachyrhizi populations and their performance over the four crop seasons. The high frequency of SDHC-I86F mutation and low sensitivity to SDHIs are widely distributed in the main soybean growing regions in Brazil and present in volunteer plants in the soybean-free period. Further detailed studies are needed to identify novel point mutations affecting the effectiveness of SDHIs. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Phakopsora pachyrhizi , Succinato Desidrogenase/genética , Amidas , Brasil , Fungicidas Industriais/farmacologia , Taxa de Mutação , Norbornanos , Phakopsora pachyrhizi/genética , Doenças das Plantas , Pirazóis
17.
BMC Biotechnol ; 21(1): 27, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33765998

RESUMO

BACKGROUND: Phakopsora pachyrhizi is a biotrophic fungal pathogen responsible for the Asian soybean rust disease causing important yield losses in tropical and subtropical soybean-producing countries. P. pachyrhizi triggers important transcriptional changes in soybean plants during infection, with several hundreds of genes being either up- or downregulated. RESULTS: Based on published transcriptomic data, we identified a predicted chitinase gene, referred to as GmCHIT1, that was upregulated in the first hours of infection. We first confirmed this early induction and showed that this gene was expressed as early as 8 h after P. pachyrhizi inoculation. To investigate the promoter of GmCHIT1, transgenic soybean plants expressing the green fluorescence protein (GFP) under the control of the GmCHIT1 promoter were generated. Following inoculation of these transgenic plants with P. pachyrhizi, GFP fluorescence was detected in a limited area located around appressoria, the fungal penetration structures. Fluorescence was also observed after mechanical wounding whereas no variation in fluorescence of pGmCHIT1:GFP transgenic plants was detected after a treatment with an ethylene precursor or a methyl jasmonate analogue. CONCLUSION: We identified a soybean chitinase promoter exhibiting an early induction by P. pachyrhizi located in the first infected soybean leaf cells. Our results on the induction of GmCHIT1 promoter by P. pachyrhizi contribute to the identification of a new pathogen inducible promoter in soybean and beyond to the development of a strategy for the Asian soybean rust disease control using biotechnological approaches.


Assuntos
Quitinases/genética , /genética , Phakopsora pachyrhizi/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Quitinases/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Phakopsora pachyrhizi/genética , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
18.
Physiol Plant ; 170(4): 592-606, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32918487

RESUMO

Nickel (Ni) and glyphosate (Gl) are able to reduce the symptoms of Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, in soybean. However, their combined effects on the energy balance and ethylene metabolism of soybean plants infected with this fungus has not been elucidated. Therefore, the effects of Ni, Gl, and the combination of Ni + Gl on ASR development, photosynthetic capacity, sugar concentrations, and ethylene concentrations in plants of a Gl-resistant cultivar, uninfected or infected with P. pachyrhizi, were investigated. Inoculated plants supplied with Ni had the highest foliar Ni concentration in all the treatments. Gl had a negative effect on the foliar Ni concentration in Ni-sprayed plants. The ASR severity was reduced in plants sprayed with Ni and Gl. Carotenoid and chlorophyll concentrations were higher in inoculated Ni, Gl, and Ni + Gl plants than in control plants. Based on the chlorophyll a fluorescence parameters, the photosynthetic apparatus of the control inoculated plants was damaged, and the least amount of energy was directed to the photochemistry process in these plants. The reduced capacity of the photosynthetic mechanism to capture light and use the energy absorbed by photosystem II in inoculated plants was reflected in their reduced capacity to process CO2 , as indicated by the high internal CO2 concentrations and low rates of net carbon assimilation. The low sugar concentrations in inoculated plants from the control treatment were linked to their reduced photosynthetic capacity due to the high ASR severity. In uninfected plants, the ethylene concentration was not affected by Ni or Gl, while the ethylene concentration decreased in inoculated plants; this decrease was more pronounced in plants from the control treatment than in treated inoculated plants. In conclusion, this study sheds light on the role played by both Ni and Gl in ASR control from a physiological perspective. Soybean plants exposed to Ni and Gl were able to maintain high ethylene concentrations and photosynthetic capacity during the P. pachyrhizi infection process; as a result, these plants consumed less of their reserves than inoculated plants not treated with Ni or Gl.


Assuntos
Phakopsora pachyrhizi , Clorofila A , Etilenos , Glicina/análogos & derivados , Níquel , Fotossíntese
19.
Sci Rep ; 10(1): 13270, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764613

RESUMO

Asian soybean rust caused by the fungal pathogen Phakopsora pachyrhizi is the most devastating disease of soybean. The host cultivar specificity of the pathogen shows considerable differentiation depending on the area and season of its emergence. Although resistance genes for P. pachyrhizi (Rpp) have been reported in several soybean varieties, the genetic background of these varieties is highly differentiated. Furthermore, some of the varieties harbor unknown genetic factors in addition to Rpp that could influence resistance reactions against the pathogen. In order to gain a comprehensive understanding of Rpp-P. pachyrhizi interactions, homogenous plant material harboring Rpp genes is necessary. In this study, we bred Rpp-near isogenic lines (Rpp-NILs), which retained identical plant characters originating from a single genetic background, and accordingly showed low-variant compatible/incompatible reactions against the pathogen. These Rpp-NILs can be used as genetic resources for studying P. pachyrhizi epidemiology and elucidating resistance mechanisms. Compatible/incompatible relationships between the soybean rust resistance gene Rpp and isolates of the pathogen P. pachyrhizi are clearly distinguishable using the Rpp-NILs bred in this study.


Assuntos
Resistência à Doença , Proteínas de Plantas/genética , Genótipo , Phakopsora pachyrhizi/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/microbiologia , /microbiologia
20.
An Acad Bras Cienc ; 92(2): e20180168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32520214

RESUMO

Meta-analysis is a probabilistic technique that combines results from several studies that approach the same topic and produce a result that sums up the whole. In the agricultural field, it is used to make empirical estimates of efficiency for the development of productivity and economic research on agriculture. Meta-analysis can be applied through software such as R, which is executed through commands, and produces results without providing user interactivity, nor does it reproduce a friendly and easy-to-understand interface. This paper presents the creation of a computer system, the WMA, which aims to simplify the execution of meta-analysis, providing a graphical interface and improves the display of the results through an interactive visualization using the Hierarchical Information Visualization Technique Bifocal Tree. For validation, the meta-analysis was applied in the agricultural area in a case study that grouped studies that used the fungicide fluquinconazole to combat the soybean rust disease, the results obtained through the application of the meta-analysis were analyzed using the WMA proposed tool.


Assuntos
Phakopsora pachyrhizi/efeitos dos fármacos , Quinazolinonas/farmacologia , Software , Triazóis/farmacologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...